Member list

Current members

Lan-Wei Yeh
Ecology and evolution of Taiwanese Carabus ground beetles.
Chung-Hsin Huang
Master topic: Flucuating Asymmetry and Developmental Asymmetry of Cyclommatus mniszechi; PhD topic: Evolution of Mandible Morphology and Fighting Behavior in Stag Beetles
Ying-Yuan Lo
Systematics, Behavior and Evolution of Lynx Spiders.
Leocris Batucan Jr.
New Species and DNA Barcoding of the Mayfly (Ephemeroptera) in Mt. Malindang, Mindanao, Philippines.
Chun-Yu Lin
Parasitoid Wasps of Damselflies; Phylogenetics and Evolution Histories of Treehoppers
Hsu-Yi Lin
Fighting Behavior of Odontolabis siva parryi Stag Beetles
Sheng Lin
Transcriptome Profiling Psolodesmus mandarinus mandarinus Damselfly
Pei-Hsuan Chang
Thermal Adaptation and Habitat Preference of Psolodesmus mandarinus Damselfly
Min-Chen Lin
Disruptive Camauflage of Colors of Pachyrhynchus Weevils.
Masahiko Tanahashi
Ecology and Evolution of Pachyrhynchus Weevils.
Su-Ping Lin
Symbiotic Yeasts of Stag Beetles
Jun-Ying Wang
Conservation of Mortonagrion hirosei Damselflies
Chin-Han Hsiao
Fighting Behavior of Rhaetulus crenatus Stag Beetles
Wei-Zhe Tseng
Systematics and Evolution of Weevils
Cheng-Tse Yung
Maternal Gift of Pachyrhynchus sarcitis Weevils

Past members

Jo-Fan Wang
Territorial behavior, trait evolution.
Yu-Hsun Hsu
Mating strategy, behavioural ecology, molecular ecology, population genetics, molecular phylogenetics, biostatistics.
Yi-Shou Yang
Reproductive Isolation of Psolodesmus mandarinus subspecies.
Wataru Kojima
Evolution of male sexual traits in Taiwanese scarab beetles.
Zhen-Yi Chen
Teng-Yu Liu
Fighting behaviour and life history observation of a stag beetle Rhaetulus crenatus crenatus.
Princess Angelie S. Casas
Insect Diversity and Evolution
Lu-Yi Wang
Defense Mechanism of Pachyrhynchus weevils.
Hui-Yun Tseng
Aposematic coloration, island biogeography.
Yu-Jen Yu
Variation and Adaptation of wings.
Yen-Ting Chen
Systematics and evolution of insects.
Yun-Chieh Cheng
Damselfly larval diet, molecular evolution.
Tai-Chia Chiang
The effect of aposematic colors of Pachyrhynchus weevils on avian predators.
Yong-Chao Su
Behavioral ecology, sociobiology, population genetics, and molecular phylogenetics.
I-Ting Hsiao
Variation of genitalia in Euphaea amphicyana.
Jyun-Huei Huang
The fighting behavior of a stag beetle, Rhaetulus crenatus.
Shi-Ting Wu
Membracis Phyllotropis.
Chiao-Wei Lin
The fighting behavior of a stag beetle, Rhaetulus crenatus.
Wei-Liang Xiao
Variation of wing veins in Euphaea amphicyana.
Hung-Nien Chen
1. The effect of typhoon on survivalship of Matrona cyanoptera. 2. Modes of phenotypic variation in Euphaea amphicyana.
Chu-Yen Cheng
Phylogeography of a Philippine's treehopper, Leptocentrus reponens.
Che-Yu Kuan
Variation of mandibles in stag beetles.
Yat-Hung Lee
Speciation of Euphaea damselflies.
Ming-Yu Chen
Phylogeography and population history of the treehoppers, Centrochares horifficus from the Philippines Archipelago.
Shao-Chang Huang
Visual Communication of Matrona cyanoptera
Jen-Pan Huang
Population Genetics and Phylogeographic Analyses of Formosan Damselfly, Euphaea Formosa (Insecta: Odonata: Euphaeidae) from Taiwan
Wei-Yun Chen
Molecular and Phylogenetic Characterization of Endosymbiotic Bacteria of the Froghopper, Okiscarta uchidae (Insecta: Hemiptera: Cercopidae)

Visiting scholars and students

Jillian del Sol
Behavioral Ecology; Mating System Ecology; Weapon Ecology and Evolution; Evolutionary Biology
Ian Dela Cruz
New Species and DNA Barcoding of the Stonefly (Plecoptera) in Mt. Malindang, Mindanao, Philippines.
Shinya Komata
Ecology & Evolution of Wing Polymorphism in a Mimetic Swallowtail Butterfly, Papilio memnon.
Vanitha Williams
Predatory potential of waterbug, Diplonychus rusticus and dragonfly, Diplacodes trivialis on mosquito larvae.
Marina Vilenica
Dragonfly composition (Insecta, Odonata) in wetland area of Turopolje region, Croatia
Klaas-Douwe 'KD' B. Dijkstra
History, diversity and identification of dragonflies and damselflies (Odonata).
Erin McCullough
" Diversification of weapon form: aerodynamic costs of beetle horns.
Ashley E. King
Intrasexual combat and intersexual antagonistic co-evolution in horned beetles.

Zhen-Yi Chen

Zhen-Yi Chen

Title

Master Student 2016-

Species: Cyclommatus mniszechi

Cyclommatus mniszechi

Project

Fighting behavior and reproductive strategy of stag beetles.

Abstrct

E-mail:j82465566@gmail.com

Link to Personal Web Pages

Facebook

Blog

Research topic
Fighting behavior and reproductive strategy of stag beetles

Male Cyclommatus mniszechi have very high variation in the morphology of mandibles and the ratio of mandible to elytra length. I investigate the difference of function between different types of mandibles and also compare the difference of fighting behavior and reproduction strategies between them.

“C.

Video recording of C. mniszechi fighting.

The presence of female stag beetle influences the contest between male stag beetles with contest experience

Contest experience influence male fighting strategy and outcome, previous studies revealed that contest experience affect the outcome of non-physical encounter stage: individuals with win-experience tend to escalate to physical grapple, in contrast, and individuals with loss-experience tend to avoid physical contact and retreat from the non-physical encounter stage. However, when a female is in presence, the female will affect the fighting behavior of males. Then, male will fight more aggressively. This study will investigate whether presence of female will affect the effect of contest experience that male have recently. Therefore, there will be two groups, female-presence group and non-female-presence group, each of which contains several contests between experienced individuals and naïve individuals. The outcome of non-physical encounter and duration of physical grapple will be recorded. The hypothesis is that males will tend to escalate to fight and prolong the duration of physical grapple. I predict that when female stag beetle is in presence, the effect of loss experience on male stag beetles will decrease, the probability of retreat from non-physical encounter decrease, and both their duration of grapple will increase. In natural field, male and female stag beetles will assemble near food site, like sap or ruin fruit, simultaneously and create social environment. This study about the effect of social environment of stag beetles will reveal extent of their fighting behavior and territory-occupying model.

All members list