Member list

Current members

Lan-Wei Yeh
Ecology and evolution of Taiwanese Carabus ground beetles.
Chung-Hsin Huang
Master topic: Flucuating Asymmetry and Developmental Asymmetry of Cyclommatus mniszechi; PhD topic: Evolution of Mandible Morphology and Fighting Behavior in Stag Beetles
Ying-Yuan Lo
Systematics, Behavior and Evolution of Lynx Spiders.
Leocris Batucan Jr.
New Species and DNA Barcoding of the Mayfly (Ephemeroptera) in Mt. Malindang, Mindanao, Philippines.
Chun-Yu Lin
Parasitoid Wasps of Damselflies; Phylogenetics and Evolution Histories of Treehoppers
Hsu-Yi Lin
Fighting Behavior of Odontolabis siva parryi Stag Beetles
Sheng Lin
Transcriptome Profiling Psolodesmus mandarinus mandarinus Damselfly
Pei-Hsuan Chang
Thermal Adaptation and Habitat Preference of Psolodesmus mandarinus Damselfly
Min-Chen Lin
Disruptive Camauflage of Colors of Pachyrhynchus Weevils.
Masahiko Tanahashi
Ecology and Evolution of Pachyrhynchus Weevils.
Su-Ping Lin
Symbiotic Yeasts of Stag Beetles
Jun-Ying Wang
Conservation of Mortonagrion hirosei Damselflies
Chin-Han Hsiao
Fighting Behavior of Rhaetulus crenatus Stag Beetles
Wei-Zhe Tseng
Systematics and Evolution of Weevils
Cheng-Tse Yung
Maternal Gift of Pachyrhynchus sarcitis Weevils

Past members

Jo-Fan Wang
Territorial behavior, trait evolution.
Yu-Hsun Hsu
Mating strategy, behavioural ecology, molecular ecology, population genetics, molecular phylogenetics, biostatistics.
Yi-Shou Yang
Reproductive Isolation of Psolodesmus mandarinus subspecies.
Wataru Kojima
Evolution of male sexual traits in Taiwanese scarab beetles.
Zhen-Yi Chen
Fighting behavior and reproductive strategy of stag beetles.
Teng-Yu Liu
Fighting behaviour and life history observation of a stag beetle Rhaetulus crenatus crenatus.
Princess Angelie S. Casas
Insect Diversity and Evolution
Lu-Yi Wang
Defense Mechanism of Pachyrhynchus weevils.
Hui-Yun Tseng
Aposematic coloration, island biogeography.
Yu-Jen Yu
Variation and Adaptation of wings.
Yen-Ting Chen
Systematics and evolution of insects.
Yun-Chieh Cheng
Damselfly larval diet, molecular evolution.
Tai-Chia Chiang
The effect of aposematic colors of Pachyrhynchus weevils on avian predators.
Yong-Chao Su
Behavioral ecology, sociobiology, population genetics, and molecular phylogenetics.
I-Ting Hsiao
Variation of genitalia in Euphaea amphicyana.
Jyun-Huei Huang
The fighting behavior of a stag beetle, Rhaetulus crenatus.
Shi-Ting Wu
Membracis Phyllotropis.
Chiao-Wei Lin
The fighting behavior of a stag beetle, Rhaetulus crenatus.
Wei-Liang Xiao
Variation of wing veins in Euphaea amphicyana.
Hung-Nien Chen
1. The effect of typhoon on survivalship of Matrona cyanoptera. 2. Modes of phenotypic variation in Euphaea amphicyana.
Chu-Yen Cheng
Phylogeography of a Philippine's treehopper, Leptocentrus reponens.
Che-Yu Kuan
Variation of mandibles in stag beetles.
Yat-Hung Lee
Speciation of Euphaea damselflies.
Ming-Yu Chen
Phylogeography and population history of the treehoppers, Centrochares horifficus from the Philippines Archipelago.
Shao-Chang Huang
Visual Communication of Matrona cyanoptera
Jen-Pan Huang
Population Genetics and Phylogeographic Analyses of Formosan Damselfly, Euphaea Formosa (Insecta: Odonata: Euphaeidae) from Taiwan
Wei-Yun Chen

Visiting scholars and students

Jillian del Sol
Behavioral Ecology; Mating System Ecology; Weapon Ecology and Evolution; Evolutionary Biology
Ian Dela Cruz
New Species and DNA Barcoding of the Stonefly (Plecoptera) in Mt. Malindang, Mindanao, Philippines.
Shinya Komata
Ecology & Evolution of Wing Polymorphism in a Mimetic Swallowtail Butterfly, Papilio memnon.
Vanitha Williams
Predatory potential of waterbug, Diplonychus rusticus and dragonfly, Diplacodes trivialis on mosquito larvae.
Marina Vilenica
Dragonfly composition (Insecta, Odonata) in wetland area of Turopolje region, Croatia
Klaas-Douwe 'KD' B. Dijkstra
History, diversity and identification of dragonflies and damselflies (Odonata).
Erin McCullough
" Diversification of weapon form: aerodynamic costs of beetle horns.
Ashley E. King
Intrasexual combat and intersexual antagonistic co-evolution in horned beetles.

Wei-Yun Chen

Wei-Yun Chen

Title

Master student 2005-2008

Species: Okiscarta uchidae

Okiscarta uchidae

Project

Molecular and Phylogenetic Characterization of Endosymbiotic Bacteria of the Froghopper, Okiscarta uchidae (Insecta: Hemiptera: Cercopidae)

Abstrct

E-mail:weiyun33@gmail.com

1. Bacterial Symbionts in the Red Striped Spittlebug, Okiscarta uchidae

Symbiotic life style is a major adaptation of organisms that can increase their diversity. Many insects, especially hemipterans, are associated with the primary as well as secondary endosymbionts. The primary endosymbiont (bacteriome associated) of insects provides their hosts with nutrition whereas the function of secondary endosymbionts is not clear. Here we used molecular phylogenetic analyses to describe the characteristics of bacterial endosymbionts in the red striped spittlebug, Okiscarta uchidae, and to investigate their phylogenetic placement within the eubacteria. We also evaluated relative evolutionary rates of endosymbionts and their free-living and pathogenic relatives. TEMs suggested that there were at least two types of endosymbionts in the bacteriomes, one of them are bacterial symbionts and the other are yeast-like organisms. Phylogenetic results suggested that there are four distinct symbiont lineages, three of them belonging to γ-proteobacteria and the other one clustered witnin the phylum Bacteroidetes. Results obtained from in situ hybridization suggested that five of the isolated endosymbionts were located inside the bacteriomes. In this study, we found that the evolutionary rates of identified symbionts were frequently the lowest among free-living, pathogenic and symbiont bacteria of insects, suggesting that they are most likely to be the “secondary” endosymbionts of O. uchidae.

Bacteriome

Bacteriome of O. uchidae

2. Cospeciation of Spittlebugs and their Primary β-Proteobacterial Endosymbionts

Most organisms have evolved mutualistic relationships with other genetic entities. Many insects hemipterans, harbor primary or obligate endosymbionts found inside the bacteriomes, which are tissues specialized for housing bacteria. Spittlebugs are unique among hemiptran insects because they primarily feed on xylem sap, which is the most nutritionally limited diet. Thus spittlebugs were considered to host a large number of diverse bacterial symbionts in bacteriomes. As a consequence of their vertical transmission, the primary endosymbionts were expected to cospeciate with their insect hosts.Our study examined the pattern of cospeciation between a group of newly identified obligate endosymbionts and their cercopid hosts using phylogenetic analyses. According to our analyses, the primary endosymbionts of spittlebugs formed a monophyletic group were clustered phylogenetically within gram-negative, β- proteobacteria. Five cospeciation events occured non-randomly when comparing the phylogenies of endosymbionts and their hosts. Bayesian relative rate analyses indicated hosts and their endosymbionts evolve at the same rate and likely to speciate at the same time. Our results suggest that this lineage of symbiont species in spittlebugs is the primary endosymbionts which cospeciated with their insect hosts.

Present address:

USA

All members list